
Computational Linguistics: Crash Course Linguistics #15
Crash Course: Linguistics
https://youtube.com/watch?v=3npuPXvA_g8
https://nerdfighteria.info/v/3npuPXvA_g8

Hi, I'm Taylor and welcome to Crash Course Linguistics!

Computers are pretty great, but they can only do stuff that humans
tell them to do. Counterintuitively, this means that the more
automatic a human skill is, the more difficult it is for us to teach to
computers.

It's easy for us to teach a computer to calculate millions of digits of
pi, or play chess. But get a computer to recognize which image
contains a traffic light? Surprisingly difficult!

The same thing goes for language. The parts that are difficult for
humans, like learning lots of new words, are easy for computers.
And the parts that are easy for humans, like understanding across
typos and accents, or knowing if someone's sad or angry or joking,
are really, really difficult for machines.

Plus, language isn’t just one task to teach. It’s all the different
things we’ve talked about throughout this series and more.
Programming computers to process human language is called
natural language processing or computational linguistics.

We rely on NLP for a whole range of tasks: search engines, voice-
activated home systems, spam filters, spell checkers, predictive text
and more. Today, we’ll look at what NLP is and what makes
language a difficult challenge for computers. [THEME MUSIC].
Getting a computer to work with something as complex as language
requires a lot of steps.

First, we need to give the computer text to work with. We can input
it directly or get the computer to transform speech sounds,
handwriting, or other physical text into digital text. We do that with
speech to text, handwriting recognition, or optical character
recognition processes.

This step involves figuring out where the breaks between words and
sentences go, such as the difference between "a moist towelette"
versus "a moist owlet," or whether a small speck is the dot of an i, a
period, or a fleck of dirt. Once it has the digital text, we then need
the computer to figure out a) the meanings of the words, and b) the
relationship between them. It might use context to disambiguate
between things like "bank" and "blank", a river bank and a financial
bank, or common nouns and proper nouns.

In this step, the machine figures out approximately what is being
said. The next step is to get it to do something useful with that
information, such as answer a question, translate it into another
language, or find directions between two places. Each of these
tasks also requires a different system.

All of this data gets produced in some abstract form that the
computer understands, like a mathematical equation or some lines
of code. The last step is to re-encode that data into natural human
language, which can involve text generation. Depending on what
the user wants, the computer might need to produce the answer as
speech, in which case it would use text to speech and speech
synthesis.

That’s a lot of steps! The nice thing about splitting up natural
language processing into different steps is that we can reuse parts
of it for other tasks. For example, if we make one system that's
good at text-to-speech for English, it can read aloud answers to
questions, translations into English, and directions to go to places.

We can also distinguish between what needs to be customized for
each human language and what can always stay in computer code.
That saves programmers, and computers, some time! Tools that
perform just one or two of these subtasks can also be useful by
themselves.

Automatic captioners may just do the speech to text part, screen
readers may just do text to speech, and search or translation may
start with text and skip processing speech entirely! A similar set of
steps could work for signed languages too, although this technology
is very under-developed compared to what’s been created for a
few big spoken languages. They could be something like: sign-to-
text, parsing signs, processing the results for a computer to work
with, and rendering the output back into signs.

We could then also create systems that interoperated between
signed and spoken languages. For example, a computer could take
input in English and translate it to ASL, or vice versa. Just like with
the thousands of spoken languages, though, each of the hundreds
of signed languages would still need to be supported separately.

One thing that won't really help is gloves. Let's head to the Thought
Bubble to pop that bubble. You might have seen hyperbolic
headlines about "sign language translation gloves" in the news
through the years.

They claim that these gloves can “translate” American Sign
Language into English speech by recognizing the wearer’s
handshapes. Unfortunately, these glove makers have made several
fundamental misunderstandings about how signed languages work.
One is that the grammar of signed languages isn't expressed just in
the shape of the hand.

Signed languages also include facial expressions and movements
of the hands and arms in relation to the rest of the body. Two is that
signed languages use far more signs than the 26 letters of the
manual alphabet, which is all the gloves can detect. Plus, signed
languages tend to use the manual alphabet to borrow technical
words from spoken languages, not for core vocabulary.

That's like making a "translation" system for English that only
recognizes the words that come from Greek! Three is that
translation should enable two-way communication between hearing
and deaf people, but gloves can only translate from signs to
speech, never from speech to a format accessible for Deaf and
Hard of Hearing people. Which is ironic, because the technology to
produce written captions of speech already exists!

Computational tools involving signed languages could one day
exist, using other input sources that can actually access full signs,
but they're never going to be any good if Deaf people aren't
consulted in creating them. And many Deaf researchers have
already pointed out that gloves are just never going to accomplish
that. Thanks, Thought Bubble!

So, let's say we've created a system that's pretty good at each of
the steps involved in natural language processing, at least for one
or two languages. Does the system "understand" language the way
a human does? To answer that, let’s pretend we’ve trained a
rabbit to press buttons A, B and C in order to get a treat.

We could relabel those buttons “I”, “want”, “food”, but that
wouldn’t mean that the rabbit understands English. The rabbit
would press the same buttons if they were labelled something
entirely unrelated. The same goes for a computer.

If we tell a computer a few basic instructions, it can give the
appearance of understanding language. But it might fall apart
spectacularly when we ask it something more complicated. That’s
part of what makes teaching a computer to do language so tricky.

Originally, people taught computers to do language tasks with long
lists of more and more specific rules, such as "make a word plural
by adding s". Wait, unless the word is "child", in which case add
"-ren" instead, and so on for other exceptions. More modern

 1 / 2

Computational Linguistics: Crash Course Linguistics #15
Crash Course: Linguistics
https://youtube.com/watch?v=3npuPXvA_g8
https://nerdfighteria.info/v/3npuPXvA_g8

approaches to machine learning involve showing computers a
whole bunch of data to train them on statistical patterns and then
testing how well they've figured out these patterns using a different
set of data.

A lot of recent leaps in natural language processing have come
from a kind of statistical machine learning known as neural
networks. Neural nets are based on a very simplified model of how
neurons work in the brain, allowing them to figure out for
themselves which factors are the most relevant in the training data.
But because they work out these factors for themselves, it's hard for
humans to know exactly what patterns they're picking up on.

Early in a neural net's training, it will make really silly, non-human-
like errors, like returning a text "eeeeeeeee" because it's worked out
that "e" is the most common letter in English writing. The machine
will keep adjusting itself based on the training data, though, and
eventually it starts returning things that look more like words. Well,
almost.

In any kind of machine learning, training data is really important,
and there are two kinds of data we can use. The first is data with
two corresponding parts that have been matched by humans, such
as text with audio, words with definitions, questions with answers,
sentences with translations, or images with captions. Using parallel
data like this is known as supervised learning, and it's great, but it
can be hard to find enough data that has both parts.

After all, some humans have to create all of these pairs. The
second kind of data has only one component, like a bunch of text or
audio or video in one language. Using this kind of non-parallel data
is known as unsupervised learning.

It’s much easier to find, but it’s harder to use to train a computer,
since it has to learn from only half of the pair. So researchers often
use a mix of both: a smaller amount of a parallel data to get things
started, and then a larger amount of non-parallel data. This
combination is called semi-supervised learning.

But none of this data just magically appears. It gets created or
gathered by humans, and humans have all sorts of biases.
Computer science researcher Harini Suresh created a framework to
evaluate bias in machine learning.

We can use this framework to see how bias affects the language
tools we’ve discussed in this episode. First, historical bias is when
a bias in the world gets reflected in the output the computer
produces. For example, Turkish doesn't make a gender distinction
in any of its pronouns, whereas English does in the third person
singular, between he, she, it, and singular they.

So a translation system might pick a gender for pronouns when
translating from Turkish to English, making "he is a doctor" but "she
is a nurse" for the same Turkish pronoun. This might reflect an
overall tendency in the world, but our computer is still producing a
gender bias! Next, representation bias is when some groups aren't
as well represented as others in the training data.

For instance, while researchers estimate that at least 2000
languages are actively being used on social media, only a few large
languages are well-represented in language tech tools. The rest are
barely represented or left out, including all signed languages. When
the features and labels in the training data don't accurately reflect
what we're looking for, that’s measurement bias.

The text that has been translated into the most languages is the
Bible, so it's often used as training data. But the style of language in
religious texts can be very different from day-to-day conversation,
and can produce strange results in Google Translate. Aggregation

bias is when several groups of data with different characteristics are
combined and a single system isn't likely to work well for all of them
at once.

If we smushed all the varieties of English into training data for an
“English” speech-to-text program, it could end up working better for
Standardized English than, say, African American English.
Evaluation bias occurs when researchers measure a program’s
success based on something users won’t find useful. Researchers
with an English-first mentality might focus on whether a predictive
text program predicts the next word, whereas a program that
predicts the next morpheme would work better for languages with
longer words and more morphemes.

When a system was originally created for reasonable purposes but
then gets misused after its release, that’s deployment bias. Style
analysis tools can be used to determine whether a historic figure
wrote an anonymous book, but they can also be misused to identify
anonymous whistleblowers. Being aware of these sources of bias is
the first step in figuring out how to correct for them.

Like the whole field of computational linguistics, addressing these
biases is an active area of research. We have a responsibility to
use our increased understanding of language through linguistics to
deeply consider the effects we have on each other and on the world
we live in. This ethical consideration is especially important in
computational linguistics, because we interact with technology so
much in our daily lives.

Next time, we’ll talk about a much older kind of language
technology which is so common that we might not even think of it as
a technology: writing systems. Thanks for watching this episode of
Crash Course Linguistics. If you want to help keep all Crash Course
free for everybody, forever, you can join our community on Patreon.

Powered by TCPDF (www.tcpdf.org)

 2 / 2

http://www.tcpdf.org

